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Abstract  

Circuit mapping is employed to study the defect con- 
tent of buckytubes and carbon nanoparticles. The topo- 
logical analysis enables the connection with the well 
established defect theory of crystalline materials. The 
complementarity between defect models of two- and 
three-dimensional structures is considered as well as the 
significance of dislocation descriptions of these materi- 
als. In accordance with recent experimental observations, 
the possibility of three-dimensional hexagonal graphitic 
stacking of atoms in these structures is examined through 
the introduction of appropriate defects that are admis- 
sible in graphite. Defects in graphene sheets introduce 
cap closure of isolated tubules and changes in tubule 
orientation, radius and helicity. In multilayered tubes, 
appropriate defects can accommodate curvature among 
adjacent sheets so that the . . .ABAB.. .  stacking is 
preserved. However, the graphite stacking is generally 
destroyed in multilayered caps owing to the lack of 
appropriate graphite defects for their accommodation. 

1. Introduction 

The discovery of carbon buckminsterfullerenes (Kroto, 
Heath, O'Brien, Curl & Smalley, 1985) and nanotubes 
(Iijima, 1991) has created a new area of interest in 
materials science, especially for applications in fields 
such as electronics and composites (Dresselahaus, 1992; 
Ebbesen, 1994; Ruoff, 1994). It has been appreciated that 
the properties of carbon cages in the fullerene family are 
structure-dependent. For example, it has been claimed 
that carbon nanotubes (or buckytubes) can exhibit vari- 
ous conductivities depending on their radius and helicity 
(Hamada, Sawada & Oshiyama, 1992; Saito, Fujita, 
Dresselahaus & Dresselahaus, 1992; Olk & Heremans, 
1994). These conclusions have been questioned by oth- 
ers, in particular with respect to whether they are valid 
for nanotubes composed of more than a few graphene 
layers (Blase, Benedict, Shirley & Louie, 1994; Bursill, 
Stadelmann, Peng & Prawer, 1994; Bursill, Peng & Fan, 
1995). Other properties have also been shown to be 
structure sensitive (Tsang, Hams & Green, 1993; Lu, 
1995)• 
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Carbon cages have been observed to acquire the 
morphologies of (single- or multilayered) spheres, tubes 
and nanoparticles or 'onions' (Ugarte, 1992; Clinard, 
Rouzaud, Delpeux, Beguin & Conard, 1994; Xie et al., 
1995). Several authors have interpreted their structures 
in terms of defects, particularly disclinations associated 
with pentagons or heptagons in two-dimensional arrays 
of hexagons representing sp 2 bonding in graphene sheets 
(Iijima, Ichihashi & Ando, 1992; Clinard, Rouzaud, 
Delpeux, Beguin & Conard, 1994). This has been shown 
to be useful, especially for discussion of the curvature of 
graphene sheets into convoluted and closed forms. The 
concept of dislocations has also been used to explain 
the accommodation of strains in adjacent sheets when 
multilayering occurs and to explain the often observed 
polygonization of nanoparticles and buckytubes with 
large radii (Zhang et al., 1993)• Other authors have 
explained this phenomenon by presenting geometrical 
arguments and experimental evidence for perturbations 
of graphene sheets involving chain configurations of sp 3 
bonding (Harris, Green & Tsang, 1993). 

In the work outlined above, a graphene sheet is treated 
essentially as a two-dimensional entity that interacts very 
weakly with adjacent sheets if present. On the other 
hand, a large body of recent evidence suggests that 
interaction between layers can be of greater significance; 
multilayered nanotubes and nanoparticles may exhibit 
a graphitic arrangement of adjacent layers, at least 
locally• Such evidence includes the preservation of the 
•.. ABAB.. .  stacking and spacing, as well as polygoniza- 
tion of tubes and particles (Liu & Cowley, 1994; Bursill, 
Peng & Fan, 1995; Reznik, Olk, Neumann & Copley, 
1995). In such circumstances, defects characteristic of 
three-dimensional structures become feasible and initial 
experimental observations have been reported (Dravid et 
al., 1993; Harris, Green & Tsang, 1993; Bursill, Peng & 
Fan, 1995; Xie et al., 1995)• 

The object of the present work is to investigate the 
complementarity between defect models of two- and 
three-dimensional structures and to consider the signif- 
icance of dislocation descriptions of carbon nanotubes 
and nanoparticles. For our purpose, we perform a topo- 
logical analysis using the method of circuit mapping; this 
enables the connection with the well established theory 
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of line defects in crystalline materials. In our account, 
we consider the tubule arrangement models observed 
and proposed so far, i.e. the model of coaxial seamless 
tubules (Iijima, 1991; Iijima, Ichihashi & Ando, 1992; 
Zhang et al., 1993), the scroll (Harris, Green & Tsang, 
1993), and the papier-mache model (Bursill, Peng & 
Fan, 1995; Zhou et al., 1994). In all cases, consideration 
of helicity is important as helicity has been shown 
to have a role in defining electric properties. In §2, 
an account of defects in two-dimensional structures is 
given. In §3, we examine defects in three-dimensional 
multilayered structures for a graphitic alignment of ad- 
jacent layers. The conclusions are discussed in §4. 

2. Defects  in two-dimens ional  structures  

2.1. Disclinations and dislocations in graphene sheets 

Defects can be characterized topologically by the 
method of circuit mapping, introduced initially by Frank 
(1951) and developed more recently by others, e.g. 
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Fig. 1. (a) The two-dimensional structure of graphcne (symmetry 
p6mm). Symmetry elements are shown superimposed on the under- 
lying structure (dashed) and, in particular, the projections of { i]00} 
mirrors (dotted) and {21 10} mirrors. Small black circles denote lat- 
tice points. The lattice translations al --1/3121 10], a2 =1/311210] 
and a3 =1/3[]120]  are also shown. (b) [00011 projection of the 
graphite structure (symmetry P63/mmc). Black and white circles 
denote atoms at height -t-1/4100011. Dotted lines denote { 1T00} 
mirror-glide planes. Arrows denote twofold symmetry axes. 

Pond & Hirth (1994). The procedure generally is to 
construct a closed circuit of discrete motions in the 
distorted configuration and subsequently to map this 
circuit into a reference space; the nature of any closure 
failure in the mapped circuit characterizes the defect 
encircled in the original circuit. In the present context, 
the reference spaces for two- and three-dimensional 
structures are the space groups for an infinite graphene 
sheet, p6mm, and for graphite, P63/mmc, respectively. 
These spaces are depicted schematically in Fig. 1. In 
this subsection, we illustrate the characterization of 
disclinations in graphene using circuit mapping and we 
demonstrate their equivalent descriptions in terms of 
dislocation arrays. We also show how a disclination's 
strain field can be annihilated by the introduction of 
appropriate defects. This information is then used to 
study the defect character of isolated seamless tubules. 
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Fig. 2. (a) Closed circuits drawn around a positive wedge disclination 
in a graphene sheet. (b) The same circuits mapped in the reference 
space. Closure failures fs and f s  t arise. 
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Consider a positive wedge disclination in graphene 
and imagine an observer to undergo the journey 
s - a - b - c - d - s  (circuit l) in direct space, as indicated 
in Fig. 2(a). All locations visited in this excursion are 
crystallographically equivalent to him, and hence the 
circuit appears to comprise a sequence of symmetry 
operations. This sequence maps to circuit s - a - b - c - d - f  
in the reference space as shown in Fig. 2(b); thus, 
there is a closure failure equal to fs. A second circuit 
s ~ - a ' - b ' - c ' - d ' - s  ' (circuit 2) and its mapped counterpart 
are shown in Figs. 2(a) and (b), respectively; the new 
closure failure is f s ' .  The closure failure is obtained 
mathematically as follows: Let the observer begin 
the journey at point s located at 2/311210] (using 
Miller-Bravais indexing), with respect to the origin 
(Fig. 2). In addition, let the observer's coordinate frame 
have the same orientation as the reference frame at 
the outset; thus, his initial orientation and location are 
defined by (I, s), where I represents the identity matrix. 
Symmetry operations in the sequence are designated 
14; = (W,w),  using the notation of International 
Tables f o r  Crystallography (Hahn, 1983). A symmetry 
operation acting on the observer when at a location r 
is written W* = (I, r )W(l ,  r) -~. Thus, a sequence of 
operations can be written C = W~ . . . . .  W e W  I, where 
the overall sequence operator C = (C, c) is referred 
to as the circuit operator. (Note that for translation 
operations W* = W.) The meaning of C is that, at the 
end of the sequence, the operator's coordinate frame 
has undergone the orthogonal operation C (rotation, 
reflection, inversion, identity) and his location is given 
by f; i.e. C(I,s) = (C, Cs + c) = (C,f). Under the 
RH/FS convention (Frank, 195 l) with the line direction 

pointing outwards from the plane of the paper, line 
defects are characterized by C- i  (Pond & Hit/h, 1994). 
For circuit 1 in Fig. 2(a), we obtain, using translation 
operations, 

and C-I = (6- ,  0), identifying the defect's 60 ° positive 
wedge disclination character. Note that, in this case, C is 
independent of the initial circuit dimensions, i.e. C 1 - 

C 2 = (6 +, 0). 
In the above discussion, the equivalence of discli- 

nations and dislocation arrays has been demonstrated 
for graphene using circuit mapping. We now discuss 
ways to remove the disclination character through the 
introduction of admissible defects. Obviously, a series of 
dislocations having Burgers vector opposite to the one 
identified by (1) can be introduced for that purpose. Fig. 
3(a) illustrates such an array, each dislocation having 
b = a~. A second way is shown in Fig. 3(b) by an 
array of dislocations with Burgers vectors 1/3[1210] and 
1/311120], the defects now comprising a tilt boundary. 
Their spacing h is consistent with the well known 
expression w = 2 s in-~(b/2h) ,  where b is the magnitude 
of the Burgers vector and w = 60 ° the strength of 
the disclination. The dislocation array introduced to 
remove the 60 ° positive wedge disclination is geomet- 
rically equivalent to a 60 ° negative wedge disclination 
(Eshelby, 1956; Li, 1972). The core of the 60 ° negative 
wedge disclination itself is realized in the form of 
a heptagon. Fig. 4(a) illustrates a pentagon-heptagon 
pair corresponding to a disclination dipole and circuit 
mapping can be employed to show that it does not have 
disclination character. In fact, the dipole corresponds to 

Cl = (I, 2a,) 

: (I, a2)(I, a2)(I, - a3)(l , - a3) 

× (I, al)(I ,  a l ) ( l ,  - a2)(I , - a2)(I, a3)(I, a3). 

(1) 

Hence, the defect encircled can be regarded as having 
dislocation content with Burgers vector b = -2a~.  
Similarly, circuit 2 can be shown to correspond to C 2 = 
( l ,4a  t) and therefore it can be regarded as encircling 
dislocations with total b = -4a~.  Thus, the defect 
content of Fig. 2(a) can be modelled as a wall of edge 
dislocations with ~11[0001], infinitesimal line length and 
each having b = - a t .  Alternatively, the circuits in Fig. 
2 may be considered as comprising sequences of sixfold 
rotation operations (6- ,  0) acting about O; thus, we have 

c : (6 +, o) = (6-,  0)(6-,  0)(6-,  0)(6-,  0)(6-,  o) 
(2) 

(a) 

(b) 

Fig. 3. (a) Array of edge dislocations, each having b -- a~, that can 
be introduced to remove the defect character from Fig. 2(a). (b) 
Equivalent array of dislocations having Burgers vectors 1 / 3[ 1210] 
and 1/311120]; the diskx:ations comprise a tilt boundary. 
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a single dislocation with b -- - a  I, as can be seen by 
mapping the closed circuit s - t - u - v - w - x - s  (circuit 3) to 
the reference space (Fig. 4b). The circuit is expressed 
mathematically as 

C3 = ( I , a  t ) 
= (I, - 2al)(I ,  3a2)(I, - 3a3)(I, 3al) 

× (I, - 3a2)(I, 3a3). (3) 

If we increase the distance between pentagon and hep- 
tagon, more dislocations of b - - a  t are inserted in a 
proportional manner. 

We now move to discuss applications of the above 
to conformations exhibiting curvature. Pentagons and 
heptagons have been identified in these arrangements 
to introduce cap closure of tubes, changes in orientation 
of their axes, in their radius and in their helicity (Iijima, 
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Fig. 4. (a) Closed circuit around a pentagon-heptagon pair. (b) The 
same circuit mapped in the reference space. The closure failure fs 
does not vary with distance from the core of  the defect and hence 
signilies the defcct 's  dislocation character (b = - a t  ). 

Ichihashi & Ando, 1992; Chico, Cresp, Benedict, Louie 
& Cohen, 1996). We treat these cases below. 

2.2. Capping of  single tubules 

Consider for example a simple single-sheet tubule 
capped by a portion of a C t80 molecule terminated 
with the zig-zag structure (Saito, Fujita, Dresselahaus & 
Dresselahaus, 1992) as shown in Fig. 5(a). As known, 
six pentagons are required for cap closure in accordance 
with Euler's constraints. Hence, the cap is a disclination 
multipole. We can identify its overall defect character 
by circuit mapping. A closed circuit is illustrated in Fig. 
5(a) around one of the six disclinations. In addition, 
a closed circuit starting at A and running around the 
circumference of the tubule is shown. In circuit mapping, 
the choice of reference space is crucial. Here we can map 
our circuits into an infinite graphene sheet or the un- 
capped tubule. Each mapping gives its own information 
as explained below. 

Fig. 5(b) shows the circuits mapped in graphene. A 
pole disclination can always be identified (irrespective 
of cap shape) and its core is taken as origin. The 
positions of the other five disclinations with respect 
to this origin are indicated and the material removed 
for the creation of each disclination is shaded. One 
closed circuit is constructed around each disclination 
and the respective closure failures f/s i (i = 0 . . . . .  5) are 
indicated. These increase with distance from the pole of 
each corresponding individual disclination as explained 
in §2.1. The defect character of the disclination multipole 
can be identified by considering the closed circuit around 
the whole configuration, i.e. the circumferential circuit. 
This circuit maps in the reference space as five disjoint 
segments AjAj+ I , which are interrelated by 60 ° rotations 
about the origin. The segments can be connected by 
adding the disclination closure failures fisi . We observe 
that the total closure failure is then always given by 
the vector FS indicated in Fig. 5(b) for any distance 
from the origin. In other words, the disclination multi- 
pole exhibits dislocation character but not disclination 
character (although the individual disclinations exist), 
since disclinations have ever increasing closure failure 
with increasing distance from the origin. The multipole's 
dislocation character depends on the distance of the five 
disclinations from the one at the pole and this is similar 
to the pentagon-heptagon case. In other words, the total 
Burgers vector increases with increasing distance of the 
disclinations. Hence, the defect character of an isolated 
60 ° positive wedge disclination can be annihilated by 
the addition of either one negative wedge disclination or 
a multipole of five positive wedge disclinations. The cap 
shape is determined by its overall defect content and the 
distribution of the component defects; the latter are in 
turn determined by the tubule radius and helicity. 

An alternative reference space for mapping is the 
uncapped tubule. Such mapping can give us information 
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(c) 

Fig. 5. (a) Single-sheet tubule having the 
zig-zag structure and capped by half 
a Cls0 molecule. Closed circuits are 
indicated around one of the six pen- 
tagons and around the circumference 
of the tubule. (b) Circuits around the 
cap disclinations mapped in graphene. 
The origin is taken to be at the pole 
disclination. The positions of the rest 
disclinations are indicated by black 
circles. The material removed for the 
creation of each discllnation is shaded. 
Disclination closure failures are de- 
noted as f i s i  ( i  = 0 . . . . .  5). Segments 
AjA/+I (j  = 1 . . . . .  9) correspond to 
mapping of the circumferential circuit 
of the tubule. The total closure fail- 
ure for this circuit is always FS. (c) 
Mapping in the uncapped tubule. A 
circumferential circuit maps as open 
segment AA'. The positions of the 
five circumferential disclinations are 
indicated by black circles. The defect 
content required to fit the cap on the 
tubule is given by the reduction in 
segment length from AA' to BB t to 
CC' .  Dotted lines delineate the white 
sectors shown in (b). 
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on the material that must be removed from the uncapped 
tubule to introduce capping. Fig. 5(c) shows the tubule 
opened out flat and we map our circuits there for 
convenience. A closed circuit around the tubule circum- 
ference maps as open segment AA' in this reference. 
The positions of the five circumferential disclinations 
are then arranged along a line and the pole disclination 
degenerates into five distinct points. The combination of 
the disclination closure failures gives the reduction in 
length of AA', i.e. the dislocation content required to 
fit the cap on the tubule. Thus, AA' reduces to BB' and 
then to CC' while moving towards the top of the cap. We 
emphasize that this defect content is defined with respect 
to circumferential vector AA ~. We can regard the cap 
to be fitted on the tubule via a one-dimensional graded 
epitaxic interface with the defects being introduced in 
order to accommodate the removal of material. Then, 
the Frank-Bilby method of circuit mapping (Christian, 
1981; Pond & Hirth, 1994) can be applied for the 
characterization of its defect content, whereby AA ~ is 
the probe vector along the interface. The reduction in 
length of AA' gives the total defect content intersected 
by the probe vector. 

The defect character of any cap can be established in 
the way presented above. 

2.3. Defects introducing changes in tubule helicity, 
radius and orientation 

Here we demonstrate the possibility of predicting 
changes in tubule parameters as a function of its defect 
content using circuit mapping. The convention adopted 
for helicity in the literature recently in terms of the helix 
angle c~ or hexagon indexing (Saito, Fujita, Dresselahaus 
& Dresselahaus, 1992) is very closely related to circuit 
mapping. According to such indexing, any tubule is de- 
scribed by a pair of integers (m, n) defining the location 
of the lattice point to be superimposed on the origin 
wtien rolling a graphene sheet to form the tubule. In 
order to keep a one-to-one correspondence, we confine 
the argument to angles o~ _< 30 °, according to graphene 
symmetry. When the tubule axis is parallel to a mirror 
line of the sheet, then o~ - 0 °, i.e. zero helicity. 

Circumferential circuits such as the one shown in Fig. 
5(a) map to become lines such as AA' in Fig. 6(a) when 
the tubule is unwrapped. However, if the tubule axis is 
inclined to a mirror line, such circuits map to forms 
like AA ' .  Let the helicity angle be defined as the angle 
c~ = / ( a  t, AA~). In general, any circumferential vector 
can always be written as AA' = ma I + na 2, where a I = 
1/3121 10] and a 2 = 1/3[1210] (note that a 3 is linearly 
dependent on a I and a2). For 0 _< (~ _< 30 °, we need 
to consider only m/2 >_ n >_ O. The tubule radius is 
given by Rmn ----]AA'I/27r = (ah/27r)(m 2 + n 2 -  mn) '/2, 
where a h = 2.455/~, the lattice parameter of graphene 
(see Appendix A). The tubule axis is defined by the 
v e c t o r  Nmn perpendicular to AA', i.e., in Miller-Bravais 

indices, Nmn = [n, ~,  (m-n) ,  0]. The helicity angle is 
given by (see Appendix A) 

o~ = cos- '  [ ( 2 m -  n) /2(m 2 + nZ - mn) '/2] 

= cos- '  [ah(2m -- n)/47rR~,,]. (4) 

We consider changes in c~, Rmn and N,,,,,, introduced 
by dislocation arrays composed of dislocations having 
primitive Burgers vectors, i.e. equal to a I and/or a 2. We 
remind the reader that such arrays correspond to combi- 
nations of pentagon-heptagon pairs as shown above. The 
distance between pentagon and heptagon and their axial 
orientation defines the total Burgers vector of the pair. 

Let the total defect content introducing the change 
be characterized by Burgers vector b -- bla I + b2a 2, 
where b 1 and b 2 a r e  integers. If the tubule prior to the 
introduction of the defects is described by the integers 
(m, n), we assume that the final tubule is described by 
integers (f, g); the latter pair defines any changes to 
helicity, radius and tubule axis from the expressions 
given above. The junction between the two tubules is 
taken up by pentagons and heptagons of total Burgers 
vector b. We regard this region as a one-dimensional 
interface as illustrated in Fig. 6(b), which shows the two 
tubules opened out flat. It can be shown that (f, g) is 
related to (m, n) and (b I , b2) as well as to the relative 
angle qo of the axes of the initial and final tubule. For our 
purpose, the Frank-Bilby method for circuit mapping is 
applied in the manner described by Pond & Hirth (1994), 
as explained analytically below. 

We designate the initial tubule black (#) and the 
final one white (A). We then consider for simplicity 
the interface line to coincide with the circumferential 
vector of tubule # and we define the defect content b for 
this particular choice. A closed circuit S - L - M - N - O - S  
encircling the interface (and hence the defects) is shown 
in Fig. 6(b). The sense of the circuit is taken to agree 
with the RH/FS convention for bicrystals (Pond & 
Hirth, 1994) with the line direction ( of the defects 
pointing outwards from the plane of the paper. This same 
convention also defines the senses of the circumferential 
vectors NS and PN of # and A, respectively. The circuit 
is shown mapped in the reference space in Fig. 6(c). A 
closure failure FS arises after mapping, corresponding 
to the total defect content b encircled. 

The closure failure is identified mathematically as 
follows: the white circuit segment reduces to the vec- 
tor SN -- v ~ (the superscript signifies that the vector 
is expressed in the coordinate frame of the reference 
space). Similarly, the black circuit segment reduces to 
NS = - v  ~. When mapped from their respective lattices 

I r 1 r to the reference, these vectors are P -  v and - P -  v ,  p ~ t, 
respectively, where P.x and - ~, are the transformations 
by which the white and black lattices are obtained from 
the reference. Hence, the circuit operator reduces in this 
case to C = (I, P ~ l V r - - P ~ l V r )  = (I, SN + NF). The 
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'A' 

(a) 

M . . . . . . .  L 

S 

(g) 

(b) 

c i r cumfe ren t i a l  
vec to r  o f  (~,) 

(c) 

" F  

i 
Fig. 6. (a) Mapping of circumferential circuits of tubules with and with- 

out helicity (AA" and AA', respectively). The dashed line denotes 
the maximum helicity angle o = 30 °. (b) Unreconstructed interface 
between two tubules, A and 11, of different radius, orientation and 
helicity, shown after the tubules have been opened out flat. PN and 
NS are the circumferential vectors of tubules A and Iz, respectively. 
(c) Mapping of the closed circuit of (b) in thc reference space. 
Closure failure FS ariscs. 

defect content is identified by C-~ and therefore 

b r =  P~, 'v  r -  P ~ ' v " .  (5) 

The vector v r is known as the probe vector. Mapped 
vectors have in the reference space the same indices as in 
their respective lattices as explained in detail elsewhere 
(Pond & Hirth, 1994). Through transformations P~, and 
P , the relative rotation and deformation of the two 

t t  

lattices is taken into account. However,  a multiplicity of 
equivalent descriptions is possible, all being consistent 
with the same physical interface (although descriptions 
for which the component  defects are relatively widely 
spaced should be more useful). For example, note that 
in the mapping of Fig. 6(c) our choice of the relative 
rotation angle is not the smallest possible; this has been 
done deliberately in order not to overcrowd a small area 
of the diagram. The choice of reference lattice is itself 
arbitrary, but (5) can be further simplified if either the 
white or the black lattice is chosen as reference, in which 
case one of P~x and Pt, is equal to I. 

We proceed by substituting in (5) b " =  b la  I + b , a  2 
and P7  l v ' = m a ,  + n a , .  Hence we obtain P T t v  r ° =  

t I t _ ' , ,~  

(m - b l ) a  1 + (n - b2)a 2. The circumferential vector of 
the white tubule forms an angle ~ with SN = P~-~v r. 
Then, from the scalar product of SN and PN, we obtain 

= t a n - '  {3' /2[(n - b2) f -  (m - b,)g] 

× [ ( 2 m - 2 b  I - n + b 2 )  f 

+ (2n - 2b 2 - -  m + b , ) g ] - '  }. (6) 

Hence, changes in helicity, orientation, and radius of 
the tubule depend, for a given initial pair (m, n), on the 
total defect content. The final expression is a completely 
general one and does not depend on the particular 
location of the interface line that was chosen initially. 
Equation (6) also takes into account the epitaxic fit of 
tubules having different radii. The applicability of (6) 
is illustrated in a simple example whereby we consider 
changes in radius and helicity while keeping ~ = 0 °. 
Hence, we obtain f i g  = (m - b l ) / ( n  - b2) from which 
all permissible combinations can be obtained. 

3. Defects in three-dimensional structures 

§2 dealt with the defect character of isolated carbon 
tubules. The constraints imposed by their defect content 
must be adhered to when we move on to multilay- 
ered tubes. In order to investigate the complementari ty 
between defect models in two- and three-dimensional 
structures, we now assume that the interactions between 
adjacent layers in multisheet structures are sufficient to 
lead to localized defect cores and explore the defect 
content of the experimentally observed configurations. 
We consider initially the model of concentric seamless 
tubules and capping of  such buckytubes. We then dis- 
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cuss the scroll model. The papier-m~ch6 model can be 
considered as composed of areas approximating either 
the seamless or the scroll model and so it is not treated 
separately. 

3.1. Concentr ic  seamless  tubules and  mul t i sheet  caps 

Consider first seamless tubules with a common axis; 
we assume that the sheets are separated by Ch/2, where 
c h is the lattice constant of hexagonal graphite normal 
to the basal plane, and that their interaction leads to the 
characteristic...  A B A B . . .  stacking sequence of graphite. 
Following Zhang et aL (1993), the circumference of the 
(n + 1)th tubule is 7rc h larger than the nth one ideally 
and this is independent of n. Thus, the magnitude of the 
additional Burgers vector per layer is 7rc h and is directed 
tangentially to the layer (i.e. in the orientation perpendic- 
ular to the tube axis and locally parallel to the basal plane 
according to the observer). Hence, the length difference 
between adjacent sheets is accommodated by edge dis- 
locations and, in order to minimize elastic energy, these 
are likely to have minimum magnitude of b. Fig. 7(a) 
illustrates a buckytube having a (1]-00) axis, i.e. a zig- 
zag arrangement of atoms along the circumference. For 
this case, the edge dislocations have b -- 1/3(1 120). It 
can be seen that the 'extra half-planes' adopt a 'cooling- 
fin' configuration. In this particular figure, it is assumed 
that the edge dislocations lying in adjacent sheets are 
arranged in eight 45 ° tilt boundaries, separating regions 
o f . . . A B A B . . ,  graphitic alignment. Such arrangements 
are likely to be favourable due to elastic interactions. 
The number of tilt boundaries depends on the spacing 
and distribution of the component defects in accordance 
with the expression 0 -- 2 sin - I (b /2h) ,  where 0 is the 
tilt angle, b is the magnitude of b and h is the spacing 
of the dislocations. The tilt-boundary assumption is 
justified by experimental observations of terminating 
fringes tending to align along radial lines in tubes 
that appear to polygonize (Bursill, Stadelmann, Peng & 
Prawer, 1994). It is interesting to note that the tilt angle 
associated with the total array (i.e. amounting to a single 
tilt boundary)is given by 0 = 2 sin -I {TrCh/[2(Ch/2)]} -- 
360 °, where b -- 7rc h is the magnitude of additional 
Burgers vector b per layer and h - Ch/2. Thus, the 
dislocations in these arrays can be regarded as com- 
prising a single 360 ° tilt boundary. A closed circuit 
is indicated in Fig. 7(a) around one of the 45 ° tilt 
boundaries. The circuit is shown mapped in the reference 
space (hexagonal graphite) in Fig. 7(b), whereby the 
defect content encircled is given by FS. Such mapping 
is consistent with the Frank-Bilby method for the defect 
content of interfaces (Christian, 1981; Pond & Hirth, 
1994). Fig. 7(c) illustrates the whole tube mapped on 
the reference space, i.e. in hexagonal graphite, and the 
'extra half-planes' comprising the 360 ° tilt wall are 
shown concentrated in one single array (shaded). We 
also note that this array cannot be modelled in terms of 

disclinations since there are no rotation operations in the 
reference space with appropriate orientation (i.e. along 
the tube axis). 

The dislocations considered above are edge ones. 
However, for the . . .ABAB. . .  stacking, screw compo- 
nents of the Burgers vector can also exist. In tliis event, 
the helix angle o~ changes locally by t an - I (bs /27rR) ,  
where R is the tubule radius and b s the magnitude of 
the screw component of the Burgers vector. 

As pointed out by Zhang et al. (1993), the number 
of defects for each layer must be integral. However, 
in the case of a (1100) tube considered above, the 
total defect content required for the accommodation of 
each layer is not integral since 7rch/a h ~---- 8.6. The 
remaining length difference between adjacent sheets has 
to be accommodated by straining the layers in a manner 
similar to epitaxic fit. The strain can be relieved by 
the introduction of one extra dislocation every two 

w _  

layers. If the tube axis were (1 120), the number of 
defects required for complete accommodation would be 
integral_(since 7rCh/3_ l/2a_ h --"~ 5) and would be composed 
of 1/3(2110)/1/3(1210) perfect dislocation pairs. Note 
that these defects have screw components of opposite 
sign that would cancel if paired but otherwise would 
modify the local value of c~. For concentric tubes where 
the axis is not parallel to (1 120) or (1]-00), the 'cooling- 
fin' structure would persist but the dislocations would 
generally exhibit some screw character. Variations of the 
screw component from layer to layer would cause local 
modifications to the helix angle o~. 

The defects considered here are dislocations ad- 
missible in the ordinary graphite structure (although 
1/3(1 120) dislocations can decompose into pairs of 
partials with Burgers vectors 1/3(]-010) and 1/3(0]-10), 
separated by stacking faults). None of the perfect or 
partial dislocations considered require the breaking 
of C---C bonds. An alternative defect model has also 
been proposed utilizing a 'wide interfacial dislocation' 
concept (Zhang et al., 1993). 

We now move to discuss the defect structure of 
multisheet caps for multilayered tubes composed of 
seamless tubules. Two issues arise; first, there is the 
defect content required to form a hemispherical (or 
equivalent) structure, as described earlier for a single 
sheet and, second, the content needed to accommodate 
successive layers as described above for concentric 
tubules. With respect to the latter, the 'cooling-fin' 
structure of edge dislocations having basal-plane Burgers 
vectors can be extended to accommodate the conforma- 
tion of sequential caps. A second orthogonal set of edge 
dislocation loops would be necessary to accommodate 
the additional curvature in the cap. On the former, we 
remind the reader that the defect content introducing 
curvature to a single-sheet cap can be visualized in 
terms of disclinations or equivalent dislocation arrays. 
The line direction of those defects is normal to the 
sheet, although the line length for defects in such sheets 
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is vanishingly small. In extending this model to three- 
dimensional structures, it must be kept in mind that the 
admissible defects are now those characteristic of the 
graphite structure. However, 60 ° disclinations are not 
admissible defects in graphite, and hence the disclination 
model cannot be extended in this structure. Since a 
sixfold screw axis arises parallel to [0001] in graphite, 
only 60 ° dispirations (i.e. a 60 ° disclination combined 
with a screw partial dislocation with b = c/2) can 
arise. The same is true for the equivalent dislocation 
array, i.e. again a b -- c /2  partial dislocation is required 
for restoration of the graphite structure. However, this 
would mean that the multisheet caps are no longer 
composed of seamless concentric layers; instead, layers 
are transformed into belical planes. Hence the structure 
of caps composed of seamless concentric layers is not 
hexagonal graphitic, i.e. even if the . . .  A B A B . . .  stacking 
is preserved in the tube, it is destroyed in the cap. 

3.2. The scroll mode l  

We now examine the scroll model and the question to 
be answered is whether the hexagonal graphitic stacking 
can be preserved in a scroll. From the above discussion, 
we observe that a scroll can conveniently be capped 
by one 60 ° dispiration and five 60 ° disclinations. In 
fact, this is the only way to cap a scroll. Assuming that 
initially we have a cap composed of seamless concentric 
layers separated by Ch/2, the dispiration's translation 
part transforms it into a manifold of helical planes. 
Hence, the graphitic structure is preserved very locally 
at the cap, i.e. around the pole dispiration. However, 
the other five disclinations remain and so the graphitic 
structure is destroyed there. Moving to the tube itself, we 
remind the reader that the rotational character of all cap 
defects is cancelled as discussed in §2.2. Hence, only 
the c /2  dislocation character remains. Although the dis- 
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Fig. 7. (a) Schematic illustration of a buckytube having the zig-zag configuration (i .e.  a (1 iO0) axis). The atomic positions correspond to line 
intersections. The graphitic . . .ABAB. . .  alignment is preserved locally through eight 45 ° tilt boundaries. Edge dislocations having 
b = 1/3(1120) are indicated. A closed circuit around one of the tilt boundaries is shown. (b) Mapping of the closed circuit in the reference 
space of single-crystalline hexagonal graphite ((1100) projection; atoms at Miller-Bravais fractional coordinates 0 ,0,0,  1/4 and 
1 /3 , -1 /3 ,  0, 1/4 are unfilled and filled, respectively). The defect content of the boundary is given by FS. The material removed is 
shaded. (c) Mapping of the whole tube in the reference space. The defects (shaded) are now taken concentrated in one array corresponding to a 
360 ° tilt wall. L i denote layers and the stacking sequence is indicated. 
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placement c/2 is rotated locally by 90 ° when going from 
the cap to the tube, the defect's line direction remains 
along the tube axis. So the dislocation is transformed into 
an edge-type Frank partial as discussed by Amelinckx, 
Bernaerts, Zhang, Van Tendeloo & Van Landuyt (1995). 
The defect array accommodating curvature is virtually 
identical to the one in the concentric seamless case, the 
'extra half-planes' of the edge dislocations adopting a 
'cooling-fin' configuration as in Fig. 7(a). If the number 
of defects in a given layer is less than sufficient to 
accommodate the circumferential strain, that particular 
sheet will experience a tensile stress. This may, in 
turn, affect the state of strain in other layers and could 
conceivably cause scrolls to wind up. We note that the 
edge dislocations described above are 'glissile' in the 
basal planes. 

4. Conclusions 

A multiplicity of defects has been described for bucky- 
tubes and carbon nanoparticles. If combined, they could 
lead to complex configurations such as the papier-m~ch6 
structures. Even in cases where the defect population is 
large, dislocation theory can provide simpler descrip- 
tions for modelling purposes than a disordered graphite 
description. We now discuss the relevance of our results 
for the interpretation of experimental observations. 

It is generally accepted that buckytubes thicken 
through the epitaxic addition of layers. Initially formed 
islands grow to full layers by the preferential addition 
of C atoms at surface ledges. Such layers may develop 
into seamless tubules or scrolls (Amelinckx, Bernaerts, 
Zhang, Van Tendeloo & Van Landuyt, 1995). A 
commonly_observed feature of multilayered nanotubes 
is the occurrence of multiple helicities within the same 
tube (e.g. Bursill, Stadelmann, Peng & Prawer, 1994). 
This is consistent with a graphitic alignment and can 
be introduced by appropriate defects. An alternative 
explanation has been proposed by Zhang et al. (1993), 
whereby a two-dimensional coincidence-site interface 
between adjacent graphene sheets is assumed. The 
suitable coincidence position can be found by relative 
rotation and translation of the sheets. Calculations 
show that such relative motion may be easy at room 
temperature (Charlier & Michenaud, 1993); on the other 
hand, it may be inhibited by factors such as polyhedral 
cap shape and re-entrant parts at the contact between 
the buckytube and its substrate (Amelinckx, Bernaerts, 
Zhang, Van Tendeloo & Van Landuyt, 1995). Hence, 
both models may be appropriate depending on various 
factors such as growth conditions, capping, curvature 
etc. 

In conclusion, the defect character of carbon 
nanotubes and nanoparticles has been studied under 
the topological framework of line defects in crystals 
and interfaces and the complementarity between two- 
dimensional and three-dimensional models has been 

investigated. For isolated seamless tubules, it has been 
shown that changes in radius, orientation and helicity 
depend on the defects introduced and, in particular, 60 ° 
disclinations and dislocations with basal-plane Burgers 
vectors, having line direction along the tube local 
normal [0001]. In multilayered tubes, the hexagonal 
graphite stacking sequence can be preserved through 
the introduction of dislocations having tangential 
basal-plane Burgers vectors that introduce curvature 
accommodation in adjacent sheets. Such defects have 
line direction along the tube axis. They can also 
possess additional screw character that changes the 
helicity locally between layers. Elastic interactions 
probably favour their arrangement in tilt boundaries. 
These boundaries can lead to polygonization for large 
radii. In multilayered caps, the graphite structure is not 
conserved since the defects required for cap closure 
are 60 ° disclinations and these are not admissible in 
graphite. The scroll structure has the same overall defect 
content as the seamless tube and can be considered to 
be obtained through the introduction of a Frank partial 
in an originally seamless tube. The Frank partial is the 
consequence of the existence of a (60 °, c/2) dispiration 
in the cap, which is an admissible graphite defect. 

The multiplicity of defects possible can lead to com- 
plex configurations, in agreement with published ex- 
perimental observations. While there are no detailed 
analyses of linear defects in nanotubes, several groups 
have reported various observations of such defects (e.g. 
Dravid et al., 1993; Zhou et al., 1994; Amelinckx, 
Bernaerts, Zhang, Van Tendeloo & Van Landuyt, 1995). 
We expect more will follow with the rigour necessary 
for crystallographic analysis. Further experimental ob- 
servations are particularly necessary for the case of 
multilayered nanotubes and nanoparticles. For the case 
of single-layered tubules, it remains to link arrays of 
pentagons and heptagons with changes in tubule geo- 
metric parameters. All this information could provide 
insight into growth mechanisms. The effect of defects 
and the possibility of graphitic stacking on the elec- 
trical properties of these materials also remains to be 
investigated. 
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APPENDIX A 

The circumferential vector can be written as 

A A ' =  ( 1 / 3 ) [ ( 2 m - n ) , ( 2 n - m ) ,  - ( m + n ) , 0 ] .  (7) 

The tubule radius is then given by R,,,,, = ]AA'I/27r 
and, using Frank's 4-space method for calculations in 
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hexagonal materials (Pond, Aindow & Clark, 1987), we 
obtain 

Rm, ' = ( l e l / 6 7 r ) [ ( 2 m -  n) 2 + (2n - m) 2 + (m + r/)2] I/2, 
(8) 

where lel - (3/2)l /Zah.  Hence, 

)Lm- + - (9) Rm,, = (ah/27. c r " n 2 mn]l/2 

If we define helicity as c~ = / ( a  1, AA")  then, from the 
scalar product (Pond, Aindow & Clark, 1987), we obtain 

c o s - '  ( [ - 2 ( n  - 2m) + (m - 2n) + (m + n)] 

x {61 /2 [ (n -  2m) 2 + ( m -  2n) 2 

+ (n + m ) 2 ] i / 2 } - i ) ,  (10) 

from which (4) is obtained. 
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